

Ф – Аннотация рабочей программы дисциплины

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

«Ядерная физика»

по направлению 22.03.01 «Материаловедение и технологии материалов» (бакалавриат)

1. Цели и задачи освоения дисциплины

Цели освоения дисциплины: является формирование представлений о явлениях микромира и современной физической теории этих явлений:

Задачи освоения дисциплины:

- Формирование системы знаний о квантовой теории атома, понимание и прогнозирование поведения атомов во внешних полях, молекулах и твердых телах;
- Получение представлений о принципах определения спектра энергии атомов и одноэлектронных волновых функций стационарных состояний, определения пространственного распределения в атомах, вычисления наблюдаемых и средних значений некоторых физических величин, характеризующих состояния атомов и атомных частии:
- формирование определенных навыков экспериментальной работы: выдвижения гипотезы, построения упрощенных моделей сложных процессов, обработки и анализа опытных данных, способов оценки численных значений физических величин и их погрешностей.

2. Место дисциплины в структуре ОПОП

Дисциплина относится к базовой части Блока Б1 «Дисциплины (модули)» основной профессиональной образовательной программы (ОПОП), устанавливаемой вузом. Данная дисциплина является одной из основополагающих дисциплин в системе подготовки бакалавра по направлению 22.03.01 Материаловедение и технологии материалов. Она охватывает широкий круг проблем и лежит в основе почти всех дисциплин инженерного направления подготовки специалистов.

Дисциплина читается в 6 семестре 3 курса и базируется на отдельных компонентах компетенций, сформированных у обучающихся в ходе изучения курса физики и математики в средней школе.

Для освоения дисциплины студент должен иметь следующие «входные» знания, умения, навыки и компетенции:

- знание базовых понятий и определений общей физики, полученных в ходе изучения школьного курса физики;
 - умение читать учебно-научную литературу;
- способность использовать математический аппарат для решения физических задач;
- умение применять получаемые навыки для решения практических задач в рамках лабораторного практикума;

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф – Аннотация рабочей программы дисциплины		

• умение анализировать результаты эксперимента и проводить необходимые математические вычисления.

Результаты освоения дисциплины будут необходимы для дальнейшего процесса обучения в рамках поэтапного формирования компетенций при изучении следующих специальных дисциплин:

- Квантовая теория. Квантовая теория конденсированного состояния
- Физико-химические методы контроля и анализа материалов
- Физические свойства твердых тел

а также для прохождения учебных и производственных практик, проектной деятельности и научно-исследовательской работы.

3. Перечень планируемых результатов освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

Код и наименование реализуемой компетенции	Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций		
ОПК-1	Знать: основные понятия и законы ядерной физики, границы их		
Способен решать	применимости,		
задачи	Уметь:		
профессиональной	- применять законы квантовой механики для описания движения		
деятельности,	микрочастиц: правильно выбирать системы отсчета, решать		
применяя методы	задачи на собственные значения для простейших случаев		
моделирования,	одномерного движения, использовать операторы		
математического	соответствующих динамических переменных и соотношения		
анализа,	между ними;		
естественнонаучные	применять законы и понятия ядерной физики при рассмотрении		
и общеинженерные	вопросов, связанных со строением атомных ядер и их моделях,		
знания	ядерных реакциях и взаимодействиях элементарных частиц;		
	Владеть:		
	- умением решения типовых задач, связанных с		
	экспериментальными основаниями ядерной физики, и задач на		
	собственные значения для простейших случаев движения		
	микрочастиц,		
	- навыками расчета средних значений динамических переменных,		
	а также задач, связанных с изучением свойств и моделей атомных		
	ядер, радиоактивным распадом, ядерным синтезом и		
	взаимодействием частиц с веществом.		

4. Общая трудоемкость дисциплины

Общая трудоемкость дисциплины составляет 5 зачетных единиц.

5. Образовательные технологии

В ходе изучения дисциплины используются традиционные методы и формы обучения (лекции, практические занятия, лабораторные работы, самостоятельная

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф – Аннотация рабочей программы дисциплины		

работа).

При организации самостоятельной работы используются следующие образовательные технологии: самостоятельная работа, сопряженная с основными аудиторными занятиями (проработка учебного материала с использованием ресурсов учебно-методического и информационного обеспечения дисциплины); подготовка к контрольной работе, выполнению индивидуальных расчетных работ; самостоятельная работа под контролем преподавателя в форме плановых консультаций, творческих контактов, внеаудиторная самостоятельная работа при выполнении студентом домашних заданий учебного и творческого характера.

6. Контроль успеваемости

Программой дисциплины предусмотрены виды текущего контроля: устный процесс, контрольные работы .

Промежуточная аттестация проводится в форме: экзамен.